Gradient Boos
tingRegre
ssor是一种基于决策树的集成学习算法,用于
回归问题。该算法的基本思想是通过多次迭代,每次迭代都训练一个新的决策树来逐步
提升模型的预测准确度。在每次迭代中,算法会根据前面所有树的拟合结果来调整样本的权重,以使得新训练的树能够更好地拟合那些之前被错分的样本。同时,为了避免过拟合,算法会引入正则化项来限制每棵树的复杂度。
Gradient Boos
tingRegre
ssor的优点是能够很好地处理非线性、非平稳和高维数据,同时具有较高的预测精度。但是,它的缺点是需要大量的计算资源和时间来训练模型,同时也比较容易受到噪声和异常值的影响。
到此这篇梯度提升回归算法(梯度提升回归算法的优缺点)的文章就介绍到这了,更多相关内容请继续浏览下面的相关 推荐文章,希望大家都能在编程的领域有一番成就!版权声明:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若内容造成侵权、违法违规、事实不符,请将相关资料发送至xkadmin@xkablog.com进行投诉反馈,一经查实,立即处理!
转载请注明出处,原文链接:https://www.xkablog.com/jszy-jnts/32709.html