作者 | Rilke
价格战的硝烟似乎还没有平息,但 AI 厂商们的又一场战争已经开始。
这一次的竞争核心是大模型应用开发。根据 IDC 报告,2023 年中国大模型平台及相关应用市场规模约还仅有区区 17.65 亿元人民币,但伴随着行业的巨变,2024 年,模型应用开发相关的产业规模预计将会上涨至百亿级别,各行各业对于 AI 技术、模型应用的重视前所未有。
“今天我们接触到的所有客户、所有开发者、所有 CTO,几乎都在用 AI 重构自己的产品。”在 2024 云栖大会上,阿里巴巴集团 CEO、阿里云智能集团董事长兼 CEO 吴泳铭也在主题演讲中印证了这一事实。在更垂直的一些领域,包括汽车制造、生物医药、工业仿真、气象预测、等行业,AI 大模型都在加速渗透。一场新产业革命正在轰轰烈烈却又默不作声地演进着。
而对于百度智能云、火山引擎、阿里云等厂商来说,大模型上游侧对于算力、底座大模型开发的攻城略地已经进入白热化,囤好了“粮”,一场产业下游的“跑马圈地”也即将开始。AI Agent、RAG、模型训推、工作流编排..... 新的技术革新故事正被传颂着,对于厂商们来说,大模型等技术终于来到了实践验证的阶段。这将是一场刺刀见红的“厮杀”,养兵千日,用兵一时,针对爆炸式增长的需求,谁能推出更好用的平台产品,谁似乎就抓住了 AI 技术发展的下一个机会。
如同 IOS 与安卓的竞争一样,生态即是关键,在规模法则愈加应验的今天,抓住更多行业的数智化浪潮,为自身垒砌护城河,已经成为关键。但许多问题仍萦绕在人们心中:市场对于大模型应用开发的核心需求是什么?对于厂商来说,怎样才能打赢这场“战争”,站在“紫禁之巅”?
1抢占先机!谁抓住了大模型应用开发,谁就抓住了未来?
大模型技术何以应用?关键在于对数据要素价值的进一步挖掘,借助大模型强大的数据处理能力和深度学习能力,数据信息等生产要素的使用效率进一步提高,并借助新的生成方式作用于企业生产业务与经营决策中,通过更深层次的“数智化”,赋能不同的生产场景。
根据前瞻产业研究院发布的《2024 中国 AI 大模型场景探索及应用报告》,大模型技术在金融、政务、教育等领域的渗透率均超过 50%,借助生成式 AI 等能力,智能客服、智能营销、智能搜索等通用场景的应用成熟度逐渐增高,在医疗、制造、电商等领域,改变也在同步发生,包括英特尔、百度在内的软硬件厂商们正在不断布局这些行业领域,希望将大模型能力进一步融入进相关场景业务中,通过针对性的垂直应用产品提升业务效率。
“风口”已经到来,但对于许多企业来说,想要自如的运用大模型的能力,却并没那么简单。首先是算力瓶颈问题,高性能硬件资源的高昂成本和专业管理需求对许多企业构成了压力。其次,不同系统和框架之间的兼容性问题也增加了额外的开发工作和技术支持需求,人才紧缺也制约了企业大模型应用开发的脚步。此外,企业还需要关注模型的构建、训练、优化、部署和维护等多个层面的需求,这又在无形中增加了成本。
所有行业,都需要性能更强、规模更大、更适应 AI 需求的基础设施,并将其作用于应用开发之中,于是 AI 独角兽、云厂商们开始持续发力。
目前,国内外主要的 AI 大模型厂商均推出了大模型应用开发平台或相应的产品矩阵,在国外,OpenAI 开发者平台、亚马逊云科技的 Bedrock,Azure AI Studio 风头正劲,在国内,百度智能云的千帆生态、字节跳动的火山方舟等也备受关注,而最近阿里云也同样在大模型应用开发领域作出了新的部署,这也进一步引起了全行业的关注。
2024 云栖大会上,阿里云宣布其主攻大模型应用开发的两大产品——大模型服务平台百炼和人工智能平台 PAI 也迎来了新的升级:阿里云百炼进一步增强⼯作流与智能体的流程编排能⼒,同时也发布了百炼 2.0 专属版本,专⻔针对政企客户做了使⽤优化;⼈⼯智能平台 PAI,已实现万卡级别的训练推理⼀体化弹性调度,AI 算⼒有效利⽤率超 90%,进一步提升了大模型工程开发能力。这无疑是阿里云为建立 AI 开发和应用落地全栈能力的又一个重要布局。
对于许多企业来说,在数智化升级的前期,相关需求并不明晰,其使用的产品就需要覆盖更多元的功能与调用能力,而百炼和 PAI 即可满足企业在大模型应用开发中的多样化需求。
百炼依托阿里云的 AI 基础设施,提供全面的模型应用开发工具,支持企业通过 prompt 构建 Agent 和 RAG 系统,实现模型功能的快速接入与应用构建。PAI 则提供构建和定制大模型的能力,满足企业从 0 到 1 构建大模型或深度定制模型的需求。无论是模型调用、应用开发还是模型开发,借助百炼和 PAI 的产品能力,企业基本能够实现模型功能在大模型领域的全栈落地。
百炼与 PAI 的能力就在于,其真正将“应用开发”的全部能力整合进产品中,并通过逻辑清晰的封装与灵活易用的特性增强其开发能力。这也有针对性地解决了诸多大模型应用开发平台所面临的问题:单个工具的使用门槛并不高,但整体构建的框架与工作流并不清晰,致使大模型应用开发陷入困顿。真正的模型应用开发,不是简单的开发一个 Agent,或是孤立的 RAG 系统,而是能够由浅入深,真正构建出一款大模型应用,从而“一站式”地满足企业的数智化升级需要,以及多元的业务需求。
到此这篇领域驱动设计demo(领域驱动设计的核心)的文章就介绍到这了,更多相关内容请继续浏览下面的相关推荐文章,希望大家都能在编程的领域有一番成就!版权声明:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若内容造成侵权、违法违规、事实不符,请将相关资料发送至xkadmin@xkablog.com进行投诉反馈,一经查实,立即处理!
转载请注明出处,原文链接:https://www.xkablog.com/hd-api/30030.html