solve, vpasolve, fsolve, fzero, roots等matlab函数的用法详解
MATLAB函数 solve, vpasolve, fsolve, fzero, roots 功能和信息概览
也就是说,之前写了几篇关于非线性求解的,如二分法、牛顿法(参见二分法、不动点迭代、牛顿法)、二次反插法(参见插值法),只有一个库函数用了类似的方法。
各函数用法详解
1. (符号/数值)解方程(组)函数 solve
官方参考页:Equations and systems solver - MATLAB solve
solve 是基本的用于符号解方程的内置函数,返回类型为符号变量矩阵($m imes n$ sym)。当无法符号求解时,抛出警告并输出一个数值解。基本形式为:
可以用solve解一维方程。对于多项式,solve可以返回其所有值。
对于不可符号求解的函数零点/方程解,solve抛出警告并返回一个数值解:
format long
solve也可以求解方程组,此时输入的表达式epn和变量var为行向量(亲测列向量不可用):
可以看出,当solve给出符号解的时候,它是不会化简计算的。任何matlab的符号计算,包括四则运算、求导积分,都不具备化简/数值计算的功能。
此外,solve函数还有一些选项可选,这使得符号求解名副其实,这才是solve的强大之处。运用solve函数,Name设定为'ReturnConditions',其值设定为true,表示要求solve函数输出详细信息。用这个方法我们可以得出一族解:
而一般地,对于多变量的多项式(组),当多项式数量不足以确定所有参数时,按照以上设定,solve函数可以解出几个变量关于其他变量的函数:
assume
2. 多初值的数值解方程(组)函数 vpasolve
官方参考页:Solve equations numerically - MATLAB vpasolve
符号型数值标量/向量(即以数值的形式显示但实际上还是符号变量)。它的基本使用方式是:
它的输入、功能和输出都和solve相仿。方程组的输入同样为行向量,变量组的输入也一样。
当输入一个可以定解的多项式方程(组)时,vpasolve将会直接给出方程的数值解;若多项式方程数量不足以确定所有的解,那么vpasolve将会给出以剩余变量表示的所求变量的函数,只是表达式的一部分(系数等)可能会以数值的形式呈现。注意,有理分式方程将会多项式化以后一样处理。对于这些方程,init_guess的值写了也没用。
对于多元方程组,vpasolve的输出也是struct结构体,访问方法也和solve输出的struct一样。不同的是,vpasolve无法求出含参的解,即无法设定'ReturnConditions'选项。和solve类似,除了多项式方程和有理分式方程以外的任何方程,vpasolve都不会给出全部解。这样一看,似乎vpasolve只不过就是把solve的结果全部转化为数值形式,甚至许多solve的功能都不能满足。这样的想法当然不对,vpasolve也有其自身的优势,这来源于:
A)可以设置初值进行数值求解。对于不可符号求解的方程,solve因为没有设定初值,可能无法搜索到合适的解。vpasolve则可以设置初值,从而可以进行后续解的搜索;B)可以随机取初值。我们都知道求解方程和最优化问题的初值选取非常玄学,而同样的初值最多只能有一个解。而结合循环等控制语句,利用vpasolve的随机初值功能可以让这一过程变得比较简单。比如可以写作初等函数的半整数阶Bessel(贝塞尔)函数,其零点有无穷多,但无法通过符号方法求解,在solve中会遇到很大的问题,但是用vpasolve设置合适的初值可以得到许多组临近初值的解。比如:
另外,一些有限个解的方程,比如 $atanx=x/2$ ,我们已经知道它有解0,根据画图还可以确定在x>0和x<0范围内各有一个解。根据atanx的性质,我们知道所有的解肯定在区间[-5,5]之中。如果使用solve,每次均有警告并且输出一样,无法获得三个不同的解;即使是之后讲的fsolve也需要每次给定初始估计(init guess)。对于vpasolve,当确定范围了以后可以简单地使用循环的控制语句,只需要规定随机撒点的区间为[-5,5]:
输出结果:
很轻松地得到了该方程的全部解而不用再去手动猜测了。
3. 数值解方程(组)函数 fsolve
官方参考页:Solve system of nonlinear equations - MATLAB fsolve
fsolve可能是目前matlab的内置库函数中最常用的求(非线性)方程(组)解的函数,也是最为人熟知的。它用于数值求解方程(组),具有较广的适用范围(适用于高维和非线性、非多项式情形),甚至可以求矩阵方程的解(即甚至可以求解未知量为矩阵的情景)。fsolve函数的基本形式是:
比如参考页面给出的示例非线性方程组:$$e^{-e^{x_1+x_2}}-x_2(1+x_1^2)=0$$ $$x_1cos(x_2)+x_2sin(x_1)=frac{1}{2}$$ 这是一个迷一般的方程组,嵌套的自然指数让人十分混乱,我们也并不期望得到这个方程的符号解或者解析解。我们将该方程组转化为matlab函数句柄:
然后调用fsolve对于函数func进行求解,输出一个求解消息和解solution:
需要注意的是,fsolve输入的函数句柄func只接受一个变量!fsolve可用于高维的情形,如例子中的二维,是通过将函数句柄的输入转化为向量实现的,即func接受一个向量形式的变量。对于创建一个输入参数为向量的函数句柄,简单地采用@方法似乎是行不通的。以上采用的方法是利用函数matlabFunction,定义变量('Var')为向量[x(1),x(2)],从而将符号变量f转化为函数句柄func。另一种可能更加普适(但更加麻烦)的方法参见官方参考页的示例或者matlab中函数fsolve的help文档,通过定义一个函数文件来实现这一操作(函数function文件和函数句柄是等价的)。
函数fsolve提供了一些可以作为输出设置的options选项。options的设置如下:
现在,尝试使用'iter'和'@optimplotfirstorderopt选项:
输出内容中,iteration为迭代次数,func-count为函数的总调用次数,f(x)为函数值的一个性质(暂时还没搞清楚是啥,毕竟二维映射不可能只有一个值),Norm of step应当是迭代步长(相邻迭代点间隔)的范数(模长),first order optimality 一阶优化条件,最终迭代是否终止的判据就是一阶优化条件是否足够接近零。绘图可以看出,随着迭代的进行,一阶优化条件趋于零。
理论上,fsolve函数还允许指定求解的算法,比如使用单纯信赖域,或者使用狗腿信赖域,或者使用Levenberg-Marquardt算法。但总而言之,fsolve的算法均属优化算法,也因此在这里不足以讨论完全,留待优化部分的笔记说明。
4. 数值求一维函数零点函数 fzero
官方参考页:非线性函数的根 - MATLAB fzero
fzero用于求函数零点。这个函数致力于求解一维函数的零点。其基本形式:
fzero在应用上最令人高兴的是其丰富的输出内容,有利于观察迭代的结果,这用到options控制。options的控制方法为:
然后将options变量带入函数即可。具体可以参见参考页,在此举两个例子,比如希望输出迭代的每一步:
则有输出(节选):
从中,我们可以看到每一步的x变化,f(x)的取值,甚至每一次迭代执行的操作:是二分法(bisection)或者插值类方法(interpolation)。我们还可以将迭代步骤可视化:
输出图片:
5. 数值求多项式零点函数 roots
官方参考页:多项式根 - MATLAB roots
除了求多项式根啥也干不了的一个函数,输入也和其他求根函数迥异。roots的标准形式如下,输入一个行向量,返回一个double型的列向量:
roots也不是一无是处。相比于fzero和fsolve这样的函数,roots可以给出多项式的所有解,包括实数解和复数解:
到此这篇matlab函数大全详解(matlab 函数)的文章就介绍到这了,更多相关内容请继续浏览下面的相关推荐文章,希望大家都能在编程的领域有一番成就!
版权声明:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若内容造成侵权、违法违规、事实不符,请将相关资料发送至xkadmin@xkablog.com进行投诉反馈,一经查实,立即处理!
转载请注明出处,原文链接:https://www.xkablog.com/matlabbc/22705.html