现在我们继续探索一下SoftPlus激活函数在人工神经网络(ANN)中的应用。了解SoftPlus激活函数的工作原理,将有助于您在使用C++ IDE构建C++应用程序时更加得心应手。

激活函数(phi()),也称为转移函数或阈值函数,它根据净输入函数的给定值(sum)确定激活值(a = phi(sum))。在这里,sum是它们权重中的信号之和,激活函数是这个和的新值,具有给定的函数或条件。换句话说,激活函数是将所有加权信号的和转换为该信号的新激活值的方法。有不同类型的激活函数,常用的包括线性(恒等)、双极性和逻辑(sigmoid)函数。
在C++中(以及大多数编程语言),您可以创建自己的激活函数。注意,sum是净输入函数的结果,它计算所有加权信号的和。我们将使用这些作为输入函数的结果。在这里,人工神经元(输出值)的激活值可以通过激活函数如下所示,

通过使用这个sum净输入函数值和phi()激活函数,让我们看看C++中的一些激活函数;现在让我们看看如何使用SoftPlus函数作为这个示例公式的,
SoftPlus激活函数由Dugas等人在2001年开发和发布。简单来说,SoftPlus函数可以写成如下,
f(x) = log( 1+exp(x) );
根据他们的论文(https://papers.nips.cc/paper/2000/file/44968aece94f667ed140b5896-Paper.pdf),他们提出的函数类别的基本思想是,他们用Softplus或sigmoid函数替换了求和的sigmoid,每个维度上都有一个(使用Softplus在凸维度上,sigmoid在其他维度上)。他们引入了新类别的函数,类似于多层神经网络具有这些属性的概念。
在C++中,SoftPlus激活函数可以编写如下:
以下是一个简单的C++ ANN示例,使用SoftPlus激活函数:
这个示例展示了如何在C++中使用SoftPlus激活函数来模拟一个简单的人工神经网络。通过这种方式,你可以构建更复杂的神经网络模型,并在C++应用中实现深度学习技术。
到此这篇sigmod激活函数表达式(sigmoid激活函数公式)的文章就介绍到这了,更多相关内容请继续浏览下面的相关推荐文章,希望大家都能在编程的领域有一番成就!版权声明:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若内容造成侵权、违法违规、事实不符,请将相关资料发送至xkadmin@xkablog.com进行投诉反馈,一经查实,立即处理!
转载请注明出处,原文链接:https://www.xkablog.com/haskellbc/63239.html