前面已经给大家介绍了有关生成树和生成森林的有关知识,本节来解决对于给定的无向图,如何构建它们相对应的生成树或者生成森林。
其实在对无向图进行遍历的时候,遍历过程中所经历过的图中的顶点和边的组合,就是图的生成树或者生成森林。
图 1 无向图
例如,图 1 中的无向图是由 V1~V7 的顶点和编号分别为 a~i 的边组成。当使用深度优先搜索算法时,假设 V1 作为遍历的起始点,涉及到的顶点和边的遍历顺序为(不唯一):
此种遍历顺序构建的生成树为:
图 2 深度优先生成树
由深度优先搜索得到的树为深度优先生成树。同理,广度优先搜索生成的树为广度优先生成树,图 1 无向图以顶点 V1 为起始点进行广度优先搜索遍历得到的树,如图 3 所示:
图 3 广度优先生成树
非连通图在进行遍历时,实则是对非连通图中每个连通分量分别进行遍历,在遍历过程经过的每个顶点和边,就构成了每个连通分量的生成树。
非连通图中,多个连通分量构成的多个生成树为非连通图的生成森林。
图 4 深度优先生成森林
例如,对图 4 中的非连通图 (a) 采用深度优先搜索算法遍历时,得到的深度优先生成森林(由 3 个深度优先生成树构成)如 (b) 所示(不唯一)。
非连通图在遍历生成森林时,可以采用孩子兄弟表示法将森林转化为一整棵二叉树进行存储。
具体实现的代码:
运行程序,拿图 4(a)中的非连通图为例,构建的深度优先生成森林,使用孩子兄弟表示法表示为:
图5 孩子兄弟表示法表示深度优先生成森林
图中,3 种颜色的树各代表一棵深度优先生成树,使用孩子兄弟表示法表示,也就是将三棵树的树根相连,第一棵树的树根作为整棵树的树根。
运行结果
13,13
1
2
3
4
5
6
7
8
9
10
11
12
13
1,2
1,3
1,6
1,12
2,13
4,5
7,8
7,10
7,9
8,10
11,12
11,13
12,13
1 2 13 11 12 3 6 4 5 7 8 10 9
非连通图采用广度优先搜索算法进行遍历时,经过的顶点以及边的集合为该图的广度优先生成森林。
拿图 4(a)中的非连通图为例,通过广度优先搜索得到的广度优先生成森林用孩子兄弟表示法为:
图6 广度优先生成森林(孩子兄弟表示法)
实现代码为:
运行结果为:
13,13
1
2
3
4
5
6
7
8
9
10
11
12
13
1,2
1,3
1,6
1,12
2,13
4,5
7,8
7,10
7,9
8,10
11,12
11,13
12,13
1 2 13 3 6 12 11 4 5 7 8 9 10
到此这篇广度优先搜索树(广度优先搜索树怎么画)的文章就介绍到这了,更多相关内容请继续浏览下面的相关推荐文章,希望大家都能在编程的领域有一番成就!版权声明:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若内容造成侵权、违法违规、事实不符,请将相关资料发送至xkadmin@xkablog.com进行投诉反馈,一经查实,立即处理!
转载请注明出处,原文链接:https://www.xkablog.com/bcyy/53912.html